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Abstract. A quantum Hamiltonian describing a set of interacting vortices is studied. A 
non-relativistic approximation for anomalous quantum electrodynamics in (2 + 1) 
dimensions is provided by this type of Hamiltonian. This model leads to fractional values 
of Hall conductance once the assumption that the external magnetic field pierces the plane 
creating the phenomenological vortices is granted. Conditions imposed on the wavefunction 
lead to a transverse conductivity which is quantised at least in the values r~ = ( I /  N ) e 2 /  h. 
N can be restricted to be an odd integer. 

1. Introduction 

In this paper I show that the mechanism proposed by Friedman et a1 [ l ]  to generate 
a fractional Hall conductance from anomalous quantum electrodynamics in (2+ 1) 
dimensions (AQED) can be extended to other theories, namely the quantum many-vortex 
Hamiltonian (QMVH)  defined here. 

The approach is based on the existence of extended carriers which exist whenever 
the external magnetic field satisfies a relation resembling magnetic flux quantisation. 
This takes place in the moving frame and by examining the physical quantities at the 
laboratory a fractional transverse conductance naturally appears. The discussion of 
this model-independent mechanism is the subject of P 2 .  In P 3, I show that the QMVH 

can make use of it. There the vortex concept is introduced. The vortex is intended to 
be the extended carrier of P 1 and must be interpreted as a quasi-particle describing 
a charged particle and its surrounding magnetic field. The non-relativistic Schrodinger 
equation describing the mutual vortex interaction, the QMVH, is constructed. I show 
that the elimination of fractional statistics, or instead the requirement of single- 
valuedness, leads to the magnetic flux quantisation assumed in § 1. For fermionic 
vortices the ground state of the QMVH can have the interesting feature that antisymmetry 
holds without the presence of nodes in the wavefunction. In 9 4, AQED in a particular 
non-relativistic limit is shown to become a QMVH. In this sense the present work 
broadens the approach of Friedman et a1 [ I ]  to obtain fractional Hall conductance. 
In the conclusion, the assumptions required to interpret the vortex flux quantisation 
in a QMVH as a fractional Hall conductance are listed. The possibility of applying this 
theory to the two-dimensional electron gas in a magnetic field is discussed and the 
main obstacles are outlined. 

Theories similar to the QMVH have been discussed before?. Here I show how they 
can lead to fractional Hall conductance. The present QMVH mechanism captures 

t See for instance [2]. 
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elements of 
suggestions 
effect [l, 41. 

both Laughlin's original wavefunction proposal [3] and the more recent 
of a possible connection between AQED and the fractional quantum Hall 

2. Fractional transverse Hall conductance 

In this section, an external magnetic flux quantisation type of relation is shown to lead 
to the discretisation of the transverse Hall conductance in fractional integer values 
when properly interpreted. 

Let axis 1 denote the direction where current is flowing and axis 2 the transverse 
direction orthogonal to it (see figure 1). 

5'  

I 

2 

5 

Figure 1. The extended carriers have no macroscopic motion in the moving frame. They 
are pictorially represented by the circles in a tight packing arrangement. 

The density of charge per area n is always constant. I assume that this charge flow 
is made of extended carriers, each one occupying a characteristic area S = l / n .  For a 
system with total area A and K of such extended carriers it follows that S = A/ K too. 
Therefore such extended carriers are in a tight packing arrangement (the dynamical 
reason for this is not formulated in this paper). The charge of these extended carriers 
is taken to be any integer multiple of the fundamental charge. 

There are two frames of interest here, the laborarory and moving frames. Attach a 
prime mark ' ' ' to identify all the quantities measured in the laboratory frame, where 
all the measurements are performed. There an external magnetic field is applied and 
a transverse electric field is established once the equilibrium transport sets in. The 
extended carriers move in the longitudinal direction with a uniform macroscopic 
constant current densityj:. The moving frame is defined such that there is no transverse 
electric field. Assume that in this frame all macroscopic currents are totally negligible 
(j, = j ,  = 0). 

The main hypothesis of this section is that in the moving frame the following 
magnetic flux relation ought to be satisfied: 

B,,,S = N h c / e  (1) 

N being any positive integer. As described before, S is the intrinsic area of the extended 
carrier. Notice that the external magnetic field can be varied continuously. Thus the 
above relation means that such extended carriers can exist only when the external 
magnetic field fulfils it for a particular integer N .  This expression can be conveniently 
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written as n/ Be,, = (11 N ) e /  hc. Now it is just a matter of performing a boost transforma- 
tion to the laboratory frame to show that 

a = ( l / ~ ) e ~ / h  (2)  

follows from (1). The condition that the moving frame feels no external electric field 
in the transverse direction, immediately tells us the velocity with which it moves with 
respect to the laboratory?: u { / c  = ESe, , /B:xt .  It also follows from the same Lorentz 
boost that B;,, = yB,,,. Therefore as seen in the laboratory frame, there is a current 
density moving along direction I :  j ;  = p ' v ; ,  p' = yp so that j :  = C U , ~ E ~ , , ,  where a,2 = 
p' /B&,  ( p  = e n ) .  One can readily check that this quantity is an invariant, p ' / B : , ,  = 

If one allows the existence of small fluctuations on the carrier's intrinsic area S, a 
natural plateau width results when the external magnetic field is varied. Beyond the 
boundaries of this plateau, the extended carriers cannot live due  to the flux quantisation 
requirement. 

P I B e x , .  

3. Quantum many-vortex Hamiltonian 

This section's goal is to show that the intrinsic magnetic flux created by a vortex of 
the QMVH must be quantised. Thus the QMVH leads to relation (1) provided that some 
further considerations are added to its interpretation. The values of the integer N can 
be restricted to be odd as we shall see. For fermionic vortices the ground-state 
wavefunction can have the remarkable property of being antisymmetric and  at the 
same time having no zeros at all! The wavefunction is taken to be totally symmetric 
in the spin degrees of freedom. This means total polarisation in the presence of a n  
external magnetic field if spin is present at all. 

Assume the existence of a preferred plane containing the vortices. In this plane, 
the vortex is taken to be a source of an  electric field and  of an  intrinsic magnetic field 
orthogonal to it. For the fields produced by this vortex, take V (  r )  to be the electrostatic 
potential. The intrinsic magnetic field B ( r )  must be localised, r being the distance in 
this plane to the centre of the vortex. Thus the divergence of this magnetic field remains 
null in this two-dimensional geometry. The vortices shall be interpreted as the extended 
carriers described in the last section. To have such an  interpretation, one must regard 
the vortex intrinsic magnetic field as being a localised external magnetic field. So the 
situation resembles the Abrikosov vortices in type I1 superconductors. 

Now the QMVH is constructed under the following assumptions: the charged vortices 
are the only existing sources of magnetic field; they interact and can have their 
trajectories modified but the electromagnetic field of each one of them remains 
unchanged when seen in their own rest frame. Therefore in this approximation no 
radiation emitted or absorbed by the vortices is considered. In fact the electromagnetic 
field is classical and of the action-at-a-distance type. In this sense the situation is 
analogous to the problem of treating a K electron atom. There the radiation contribution 
is as a rule totally ignored and one concentrates on the mutual Coulomb interaction 
among the electrons and  nuclei. Thus the QMVH describing the dynamics of the mutual 

+ The Lorentz transformations for the current vector and the electromagnetic tensor are as follows: E ,  = E ; ,  
E,=r(E; -P&) ,  B ~ = Y ( B ; - P E ; ) ,  p = y ( p ' - P j j / c ) ,  j , l c = y ( j ; / c - p p ' ) ,  j , = j ; ,  P = v ; / c  and y =  
(1  - P 2 )  - " I .  
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vortex interactions with no external electromagnetic fields present? is 

H = [(PI - e A , / ~ ) ~ / 2 m  + eV,/2]. ( 3 )  
I 

The electromagnetic field felt by vortex i in the presence of the remaining K - 1 vortices 
is given by 

% =  V ( r I J )  A,  = A o , + A i t  A01 = c Ao(r,,) AI ,  = c '41(r,) (4) 
J f '  , # I  I # ,  

where the functions V, A. and A I  are the fields produced by a single vortex. r,, = r, - r, 
is the distance between vortices i and j and 8, = tan-'[(x,, - x2,)/(xlI  -xlJ)] .  The 
magnetic potential of each vortex has two contributions: 

A(r) = Ao(r)+ A,(r)  A. = A,( r)  6 A~ = ( ~ ' , / 2 T ) v e .  ( 5 )  

The first term is derived by looking at the curl of A[d(rA,)/r dr -aA,/r dB = B(r)] 
together with the appropriate symmetry arguments (A,(r), A, = 0). The second term 
guarantees that at infinity the vortex magnetic flux, a',, is obtained. 8 is the azimuthal 
angle with respect to the x1 axis. In the Schrodinger equation for this assembly of 
quantum vortices, H 9  = ifi av'lat, a gauge transformation rotates away the long-ranged 
magnetic potential A I and introduces a potentially multivalued wavefunction, 

(6) v ' ( r l , .  .., r,; t)=[exp(ief/fic)]x(rl , .  .., r,; t )  f= (Qv/2T)  c 8,. 
I <I 

The demand of single-valuedness for q is an outside physical requirement that is 
imposed upon the theory$. The wavefunction x obeys h o x = i f i  axlat, h a =  
Z, [ ( P ,  - eA0,/c)*/2m + eVJ21, which contains only short-ranged potentials. 

The quantisation of the vortex intrinsic magnetic field follows from imposing the 
wavefunction x to be single-valued or instead demanding conventional statistics for 
the vortices. By requiring that x be single-valued, the energy levels of (3 )  become 
independent of the long-ranged pure gauge term A,.  Writing the wavefunction v' with 
complex coordinates, zJ = xlJ + ix2,, such that t, - zJ = r,, exp io,, and r,, = Ir,,(, one finds 

(7) 

where m = e@',/ hc. Rotating vortex i around vortex j by an angle 2 4  BZ, + 8, + 2 ~ )  
such that no other vortices are contained inside the loop brings an extra contribution 
to the wavefunction: q ( 2 ~ )  = [exp(i 27reQv/ hc)]v'(O). This wavefunction being single- 
valued imposes that the phase must be ~ T N ,  with N a non-zero integer, thus leading 
to the main result of this section, i.e. the quantisation of the vortex intrinsic magnetic 
flux: 

$ = X(Z?, z,) (; r.) - I  
I <I 

Qv = Nhc/ e. (8) 

t In principle a neutralising background can be introduced but I do not do so because it is irrelevant for 
the purposes of this paper. 
$ Menbacher [SI observes ( p  243) that the question of Y being single-valued ' . . . can only be answered in 
terms of a model of the physical situation at h a n d . .  . . If observation calls for the use of a model in which 
a portion of space is actually and permanently "off limits" to a particle, the possibility of multivalued 
wavefunctions would have to be examined, but as long as we think of such restrictions merely as limiting 
cases of high, finite, but "in principle" penetrable barriers, the wavefunction must be taken to be single-valued 
in the discussion of the Aharonov-Bohm effect.' 
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The quantisation of the vortex magnetic field can follow from another condition 
replacing single-valuedness on x: fractional statistics [6] is excluded from this model 
whenever is quantised according to the values from (8). For simplicity, consider 
the presence of only two vortices, i and j .  Rotate vortex i around vortex j of an angle 
n, (8, + + n, e,, + e,, + n) and require that the wavefunction changes at most by one 
of the phases +1 or -1. Apart from an overall translation, this restriction implies 
either fermionic or bosonic statistics. Conventional statistics must be valid in both 
gauges, thus being required for 9 and x independently. In (7) ,  this operation 
corresponds to the exchange z, t, z, between the two vortices. 

If the wavefunction is given by (6), one can further restrict the values of N to be 
odd integers by including the following hypothesis. 

(i)  The vortices are fermions. 
(ii) If the vortices have spin, the wavefunction contribution is symmetric under 

the exchange of any two of them. 
(iii) There is an energy gap separating the ground and the first excited states so 

that only the properties of the ground state concern us. 
Given these elements, the only possible antisymmetric contribution to the wavefunc- 

tion comes from this phase factor. Exchanging any two vortices on it (e,, = By + n) 
gives 9,-, = ( - l ) N 9 ,  thus restricting N to be odd. Another implicit assumption is 
being made here. The ground state of the Hamiltonian ho must be a completely even 
function under the interchange of any two particles. This is a fair hypothesis considering 
that odd functions must vanish at crossing points and this costs kinetic energy, thus 
increasing the value of the total energy. Remarkably, antisymmetry can be satisfied 
without the presence of nodes in the wavefunction. Those may appear for the sole 
reason of a very repulsive core in the electrostatic interaction. Thus the fermionic 
vortex system displays the properties of a bosonic state. 

It is possible to enlarge the allowed values of the magnetic flux to Q v  = ( N /  P ) h c /  e 
if the vortices can have a charge Pe where P is an integer. However, notice that the 
discrete values given by (8) still are a sufficient condition (although not necessary!) 
to keep the wavefunction single-valued. 

As a concrete illustration of a vortex, take the magnetic field B ( r )  = 

Bo e~p[ - ( r / r , )~ ] .  This particular magnetic field distribution will be called the 
phenomenological vortex. From it the magnetic flux is directly computed, a( r )  = 
Bonr:{l - exp[ - ( r /  ro)’]}. The magnetic potential consistent with these expressions is 
A B ( r )  = - ( B ~ r ~ / 2 ) { e x ~ [ - ( r / ~ ~ ) ~ ] } / ~ .  Hence the net magnetic vortex flux, = B0n& 
must be taken in quantised values according to (8). 

4. Anomalous quantum electrodynamics in (2 + 1) dimensions 

In the non-relativistic regime explained in the last section, one verifies that AQED falls 
into the class of the QMVH. In this sense the AQED vortex proposed by Friedman et 
a1 [ l ]  is a particular example of a QMVH with specific electrostatic and magnetic 
potentials which in fact are singular at their origins. To be able to claim that AQED 

describes matter in the presence of an external magnetic field, one must evoke assump- 
tion (ii) of the conclusion. This is because, contrary to Maxwell’s equations in (3  + 1) 
dimensions, the AQED equations do not admit a constant magnetic field as a vacuum 
solution ( p  = j ’  = 0). In fact all time-independent vacuum solutions (apart from null 
electric and magnetic fields) grow exponentially with distance. Therefore the magnetic 
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field B can only be produced by the matter distribution. The AQED model [I]  has the 
fermions as well as their electromagnetic field confined to the plane. In the QMVH 

approach of this paper, ones sees that it is possible to evade the restriction of a 
two-dimensional electromagnetic field simply because one has the freedom of choosing 
the vortex potentials. 

It is well known [7] that the AQED interaction is short ranged due to the presence 
of a parameter p t  that has the dimension of inverse of length in two-dimensional 
units. For AQED the analogues of Maxwell’s equations with sources become: aE’/ax’+ 
p B  = p, and 
-aB/ax’ -aE21c a t  - p E ’  = j 2 / c .  The field produced by the static point charge ( p ( r )  = 
es’(O), j ’  = 0) of this theory is precisely an example of the vortex defined in the last 
section: V(r) = ( e /27r )Ko(pr )  and B ( r )  = (pe/27r)Ko(pr). KO is the first-order 
modified Bessel function of the third kind [9 ]$ .  The multiplicative constants in these 
solutions are adjusted so that in the limit p + 0, the usual electrostatic point charge 
field in (2+ 1) dimensions is recovered. The magnetic flux produced by a vortex is 
Q v = e I p .  Then the magnetic potential is of the type described by (4), A o ( r ) =  
(e/27rp) dK,(pr)/dr. Assume that the vortex charge distribution, p ( r )  = 
e Z , 6 * ( r - r k ( f ) ) ,  is in a moving frame where the presence of any currents can be 
disregarded ( j , (  r )  = 0). Thus the only dynamics left is contained in the fermions whose 
Schrodinger equation is given by a MVQH with specific potentials A and V. Equation 
(8) becomes, in this situation, 

aE2/ax‘ - aE’/ax2 + a B / c  at = 0, aB/ax2 - aE’1 c at + p E 2  = j ‘ l  c 

p = (11 N ) e Z /  hc. (9) 

5. Conclusion 

To be able to claim that a fractional Hall conductance follows from a QMVH, one must 
interpret this theory in a suitable way. This means the inclusion of the following 
assumptions. 

(i) The QMVH describes the carriers in the frame where the transverse external 
electric field is absent. 

(ii) The total intrinsic vortex magnetic flux is in fact the external magnetic flux 
that strikes the plane = @J. 

(iii) Vortices have a fixed radius. Consequently they exist whenever the external 
magnetic flux satisfies the vortex flux quantisation condition. 

(iv) Vortices are in a close packing arrangement. 
The upshot of this interpretation of the quantum Hamiltonian is that, granted the 

conditions above, the vortex picture leads to (1). Conditions (ii)  and (iii) together 
with (8) do so, the density n being the number of vortices divided by the system’s 
total area. Then a boost back to the laboratory frame will provide the conductivity 
values of (2) for a filling factor v = 1/ N. For the phenomenological vortex previously 
defined the two parameters are the magnetic field Bo and the vortex radius r,. The 
radius is constant and so the vortices do not exist whenever the external magnetic field 
surpasses the discrete values given by the flux quantisation (Bo7rri = Nhc/ e ) .  

t Some authors [8] have shown that in ( 2 +  1) dimensions, a Dirac electron in the presence of an external 
magnetic field induces the anomalous contribution p in the action by radiative corrections. 
$The modified Bessel function K o ( a )  has the following asymptotic limits: a<< 1, & ( a ) +  
-ln(a/2)+0.5772.. . , a 7> 1, KO(a)+[(a /2n)”’ ]  exp(-a). 
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Now I would like to comment on a possible application of this present QMVH 

approach to the fractional Hall effect observed in the GaAs-AlGaAs heterojunctions 
[ 101. Following the interpretation of a vortex in terms of an electron and the external 
magnetic field, the main obstacle to this possible connection is pointed out. 

Consider the moving frame where the only external field at the plateaux? is magnetic. 
As it is well known the resistivity in the longitudinal direction drops to zero in the 
plateaux. The transverse resistivity and conductivity become the inverse of each other. 
Take the plane of the two-dimensional electron gas. The electrons’ total magnetic flux 
crossing the plane is zero. Therefore the total magnetic flux in the plane is the same 
external magnetic flux hitting this plane. Then the intrinsic magnetic flux Qv is 
interpreted as the external magnetic flux penetrating the region where an electron loop 
current exists. The vortex magnetic field B ( r )  represents the total magnetic field in 
the same region, i.e. the sum of the external magnetic field striking the plane in these 
surroundings plus the internal magnetic field produced by the electron’s orbital motion. 
In a first approximation one expects the latter to be negligible when compared to the 
former. To another particle living in this plane, this electron loop current is seen as 
a vortex, i.e. an actual source of magnetic field. As seen in the quantum Hamiltonian 
(3), the dynamics is solely created by the magnetic and electric fields of the vortices. 
This is as if the external magnetic field pierced the plane producing a vortex at each 
area of penetration. The QMVH is phenomenological at best because it does not and 
cannot provide the properties of the loop current produced by one electron. The vortex 
should be seen as an idealisation of the present description. 

Vortices must be close packed to produce a total magnetic field as uniform as 
possible throughout the plane. The vortex density is high so that the total area divided 
by their number is S, the area where most of the magnetic flux setting a single vortex 
is concentrated. 

It is unavoidable in the present QMVH formulation that in the charged plane the 
sum of the individual vortex magnetic fields will not lead to a constant total magnetic 
field. Even under a tight-packing arrangement there will be local variations of the 
order of ten to twenty per cent from the minimum to the maximum value. For the 
electrons trapped into an AlGa- AlGaAs heterostructure one does not expect such a 
strong diamagnetism. However, the QMVH approach does not claim to describe the 
magnetic fields infinitesimally away from the vortex two-dimensional plane. Thus in 
principle one can simply hypothesise a magnetic field approaching uniformity very 
quickly below and above this plane, so that current experiments would not detect such 
non-uniformity. The reasons for this possible behaviour are not clear however. 

The spatial configuration that vortices take in the plane will be the one that minimises 
the energy of the QMVH. The question regarding the existence of a gap in the QMVH 

is of importance to the present approach. This dynamical question will be the subject 
of a forthcoming publication. 
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